DCMM数据管理能力成熟度评估模型
- 专业服务保障
- 一对一全程指导
- 高效快捷体验
信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值,已成为国家基础性战略资源,正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。数据价值发挥的前提是管理好数据,然而,数据规模的增加、数据格式的复杂化等都给企业数据管理提出了挑战。
信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值,已成为国家基础性战略资源,正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。数据价值发挥的前提是管理好数据,然而,数据规模的增加、数据格式的复杂化等都给企业数据管理提出了挑战。
信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值,已成为国家基础性战略资源,正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。数据价值发挥的前提是管理好数据,然而,数据规模的增加、数据格式的复杂化等都给企业数据管理提出了挑战。
《数据管理能力成熟度评估模型》(以下简称DCMM)是我国在数据管理领域首个正式发布的国家标准,旨在帮助企业利用先进的数据管理理念和方法,建立和评价自身数据管理能力,持续完善数据管理组织、程序和制度,充分发挥数据在促进企业向信息化、数字化、智能化发展方面的价值。
1.1 评估依据数据管理能力成熟度评估的依据是国家标准GB/T 36073-2018《数据管理能力成熟度评估模型》,该标准借鉴了国际上数据管理理论框架和方法,在综合考虑国内数据管理情况发展的基础上,整合了标准规范、管理方法论、数据管理模型、成熟度分级等多方面内容。
1.2 评估内容DCMM数据管理能力成熟度评估模型定义了数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期八个核心能力域及28个能力项,并以组织、制度、流程和技术作为八个核心域评价维度。1.3 能力等级
DCMM将数据管理能力成熟度划分为五个等级,自低向高依次为初始级、受管理级、稳健级、量化管理级和优化级,不同等级代表企业数据管理和应用的成熟度水平不同。
DCMM评估企业收益
(1)帮助和指导企业获得数据管理现状,识别与行业最佳实践差距,找准关键问题,提出数据管理改进建议和方向。DCMM主要适用对象
(1)数据拥有方:金融和保险机构、互联网企业、电信运营商、工业企业、数据中心所属主体、高校、政务数据中心等;